Partial phenotypic reversion of ABA-deficient flacca tomato (Solanum lycopersicum) scions by a wild-type rootstock: normalizing shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate

نویسندگان

  • Ian C. Dodd
  • Julian C. Theobald
  • Sarah K. Richer
  • William J. Davies
چکیده

To evaluate the role of root-synthesized ABA in regulating growth and stomatal behaviour under well-watered conditions, isogenic wild-type (WT) and ABA-deficient flacca (flc) tomato (Solanum lycopersicum) were reciprocally and self-grafted just below the cotyledonary node. Since flc scions had lower leaf water potentials due to higher transpiration rates, a subset of all graft combinations was grown under a shoot misting treatment to minimize differences in shoot water status. Misting did not alter the relative effects of the different graft combinations on leaf area. WT scions had the greatest leaf area and lowest whole plant transpiration rate irrespective of the rootstock, implying that shoot ABA biosynthesis was sufficient to account for a WT shoot phenotype. In WT scions, the rootstock had no effect on detached leaf ethylene evolution or xylem concentrations of ABA or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). In flc scions, although the WT rootstock suppressed stomatal conductance of individual leaves, there was no detectable effect on whole plant transpiration rate. However, leaf area of flc/WT (scion/rootstock) plants increased 1.6-fold compared to flc self-grafts. WT rootstocks increased xylem ABA concentration in flc scions (relative to flc self-grafts) up to 3-fold, and resulted in xylem ACC concentrations and detached leaf ethylene evolution similar to WT scions. Since the WT rootstock normalized shoot ethylene relations but only partially restored the leaf area of flc scions (relative to that of WT scions), shoot ABA biosynthesis can directly promote leaf area via an unknown, ethylene-independent, mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene.

To examine whether the reduced shoot growth of abscisic acid (ABA)-deficient mutants of tomato is independent of effects on plant water balance, flacca and notabilis were grown under controlled-humidity conditions so that their leaf water potentials were equal to or higher than those of well-watered wild-type plants throughout development. Most parameters of shoot growth remained markedly impai...

متن کامل

Water Relations and Growth of the flacca Tomato Mutant in Relation to Abscisic Acid.

The flacca mutant in tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) was employed to examine the effects of a relatively constant diurnal water stress on leaf growth and water relations. As the mutant is deficient in abscisic acid (ABA) and can be phenotypically reverted to the wild type by applications of the growth substance, inferences can be made concerning the involvement of ABA ...

متن کامل

Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves.

Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CK(xyl)]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plan...

متن کامل

Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygen...

متن کامل

Root-derived cytokinins as long-distance signals for NO3--induced stimulation of leaf growth.

Leaf growth of many plant species shows rapid changes in response to alterations of the form and the level of N supply. In hydroponically-grown tomato (Lycopersicon esculentum L.), leaf growth was rapidly stimulated by NO(3)(-) application to NH(4)(+) precultured plants, while NH(4)(+) supply or complete N deprivation to NO(3)(-) precultured plants resulted in a rapid inhibition of leaf growth....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009